3.5.2. Water’s Function

Water’s Importance to Vitality

You get up in the morning, flush wastes down the toilet, take a shower, brush your teeth, drink, eat, drive, wash the grime from your windshield, get to work, and drink coffee. Next to a fountain you eat lunch and down it with a glass of water, you use the toilet again and again, drive home, prepare dinner, etc. Add all the ways you use water every day and you still will not come close to the countless uses water has in the human body. Of all the nutrients, water is the most critical as its absence proves lethal within a few days. Organisms have adapted numerous mechanisms for water conservation. Water uses in the human body can be loosely categorized into four basic functions: transportation vehicle, medium for chemical reactions, lubricant/shock absorber, and temperature regulator.

 

Satellite image of a coastal area
Image by NASA on unsplash.com / CC0

Water is the foundation of all life—the surface of the earth is 70 percent water; the volume of water in humans is about 60 percent.

Water as a Transportation Vehicle

Water is called the “universal solvent” because more substances dissolve in it than any other fluid. Molecules dissolve in water because of the hydrogen and oxygen molecules ability to loosely bond with other molecules. Molecules of water (H2O) surround substances, suspending them in a sea of water molecules. The solvent action of water allows for substances to be more readily transported. A pile of undissolved salt would be difficult to move throughout tissues, as would a bubble of gas or a glob of fat. Blood, the primary transport fluid in the body is about 78 percent water. Dissolved substances in blood include proteins, lipoproteins, glucose, electrolytes, and metabolic waste products, such as carbon dioxide and urea. These substances are either dissolved in the watery surrounding of blood to be transported to cells to support basic functions or are removed from cells to prevent waste build-up and toxicity. Blood is not just the primary vehicle of transport in the body, but also as a fluid tissue blood structurally supports blood vessels that would collapse in its absence. For example, the brain which consists of 75 percent water is used to provide structure.

Water as a Medium for Chemical Reactions

Water is required for even the most basic chemical reactions. Proteins fold into their functional shape based on how their amino-acid sequences react with water. These newly formed enzymes must conduct their specific chemical reactions in a medium, which in all organisms is water. Water is an ideal medium for chemical reactions as it can store a large amount of heat, is electrically neutral, and has a pH of 7.0, meaning it is not acidic or basic. Additionally, water is involved in many enzymatic reactions as an agent to break bonds or, by its removal from a molecule, to form bonds.

Water as a Lubricant/Shock Absorber

Many may view the slimy products of a sneeze as gross, but sneezing is essential for removing irritants and could not take place without water. Mucus, which is not only essential to discharge nasal irritants, is also required for breathing, transportation of nutrients along the gastrointestinal tract, and elimination of waste materials through the rectum. Mucus is composed of more than 90 percent water and a front-line defense against injury and foreign invaders. It protects tissues from irritants, entraps pathogens, and contains immune-system cells that destroy pathogens. Water is also the main component of the lubricating fluid between joints and eases the movement of articulated bones.

The aqueous and vitreous humors, which are fluids that fill the extra space in the eyes and the cerebrospinal fluid surrounding the brain and spinal cord, are primarily water and buffer these organs against sudden changes in the environment. Watery fluids surrounding organs provide both chemical and mechanical protection. Just two weeks after fertilization water fills the amniotic sac in a pregnant woman providing a cushion of protection for the developing embryo.

Water as a Temperature Regulator

Another homeostatic function of the body, termed thermoregulation is to balance heat gain with heat loss and body water plays an important role in accomplishing this. Human life is supported within a narrow range of temperature, with the temperature set point of the body being 98.6°F (37°C). Too low or too high of a temperature causes enzymes to stop functioning and metabolism is halted. At 82.4°F (28°C) muscle failure occurs and hypothermia sets in. At the opposite extreme of 111.2°F (44°C) the central nervous system fails and death results. Water is good at storing heat, an attribute referred to as heat capacity and thus helps maintain the temperature set point of the body despite changes in the surrounding environment.

There are several mechanisms in place that move body water from place to place as a method to distribute heat in the body and equalize body temperature (Figure 3.5.2.1 “Thermoregulatory Center”). The hypothalamus in the brain is the thermoregulatory center. The hypothalamus contains special protein sensors that detect blood temperature. The skin also contains temperature sensors that respond quickly to changes in immediate surroundings. In response to cold sensors in the skin, a neural signal is sent to the hypothalamus, which then sends a signal to smooth muscle tissue surrounding blood vessels causing them to constrict and reduce blood flow. This reduces heat lost to the environment. The hypothalamus also sends signals to muscles to erect hairs and shiver and to endocrine glands like the thyroid to secrete hormones capable of ramping up metabolism. These actions increase heat conservation and stimulate its production in the body in response to cooling temperatures.

Figure 3.5.2.1 Thermoregulatory Center

Thermoregulation is the ability of an organism to maintain body temperature despite changing environmental temperatures.
Source: Water’s Importance to Vitality 

Regulation of Water Balance

As you eat a bite of food, the salivary glands secrete saliva. As the food enters your stomach, gastric juice is secreted. As it enters the small intestine, pancreatic juice is secreted. Each of these fluids contains a great deal of water. How is that water replaced in these organs? What happens to the water now in the intestines? In a day, there is an exchange of about 10 liters of water among the body’s organs. The osmoregulation of this exchange involves complex communication between the brain, kidneys, and endocrine system. A homeostatic goal for a cell, a tissue, an organ, and an entire organism is to balance water output with water input.

Regulation of Daily Water Input

Total water output per day averages 2.5 liters. This must be balanced with water input. Our tissues produce around 300 milliliters of water per day through metabolic processes. The remainder of water output must be balanced by drinking fluids and eating solid foods. The average fluid consumption per day is 1.5 liters, and water gained from solid foods approximates 700 milliliters.

Figure 3.5.2.2 Daily Fluid Loss and Gain

Daily Fluid Loss and Gain
Water is gained and lost in a variety of ways throughout the day.

Source: Water’s Importance to Vitality

Dietary Gain of Water

The Food and Nutrition Board of the Institute of Medicine (IOM) has set the Adequate Intake (AI) for water for adult males at 3.7 liters (15.6 cups) and at 2.7 liters (11 cups) for adult females.[1] These intakes are higher than the average intake of 2.2 liters. It is important to note that the AI for water includes water from all dietary sources; that is, water coming from food as well as beverages. People are not expected to consume 15.6 or 11 cups of pure water per day. In America, approximately 20 percent of dietary water comes from solid foods. See Table 3.5.2.1 “Water Content in Foods” for the range of water contents for selected food items. Beverages includes water, tea, coffee, sodas, and juices.

Table 3.5.2.1 Water Content in Foods

Percentage Food item
90–99 Nonfat milk, cantaloupe, strawberries, watermelon, lettuce, cabbage, celery, spinach, squash
80–89 Fruit juice, yogurt, apples, grapes, oranges, carrots, broccoli, pears, pineapple
70–79 Bananas, avocados, cottage cheese, ricotta cheese, baked potato, shrimp
60–69 Pasta, legumes, salmon, chicken breast
50–59 Ground beef, hot dogs, steak, feta cheese
40–49 Pizza
30–39 Cheddar cheese, bagels, bread
20–29 Pepperoni, cake, biscuits
10–19 Butter, margarine, raisins
1–9 Walnuts, dry-roasted peanuts, crackers, cereals, pretzels, peanut butter
0 Oils, sugars

Source: National Nutrient Database for Standard Reference, Release 23. US Department of Agriculture, Agricultural Research Service. http://www.ars.usda.gov/ba/bhnrc/ndl. Updated 2010. Accessed September 2017.

Different foods have different water contents. Oils and sugars do not contain any water however foods such as milk, strawberries and watermelon can be up to 99% water.

There is some debate over the amount of water required to maintain health because there is no consistent scientific evidence proving that drinking a particular amount of water improves health or reduces the risk of disease. In fact, kidney-stone prevention seems to be the only premise for water-consumption recommendations. You may be surprised to find out that the commonly held belief that people need to drink eight 8-ounce glasses of water per day isn’t an official recommendation and isn’t based on any scientific evidence! The amount of water/fluids a person should consume every day is actually variable and should be based on the climate a person lives in, as well as their age, physical activity level, and kidney function. No maximum for water intake has been set.

Thirst Mechanism: Why Do We Drink?

Thirst is an osmoregulatory mechanism to increase water input. The thirst mechanism is activated in response to changes in water volume in the blood, but is even more sensitive to changes in blood osmolality. The “thirst center” is contained within the hypothalamus, a portion of the brain that lies just above the brainstem. In older people the thirst mechanism is not as responsive and as we age there is a higher risk for dehydration. 

Sodium and fluid balance are intertwined. Osmoreceptors (specialized protein receptors) in the hypothalamus detect sodium concentration in the blood. In response to a high sodium level, the hypothalamus activates the thirst mechanism and concurrently stimulates the release of antidiuretic hormone.

The physiological control of thirst is the backup mechanism to increase water input. Fluid intake is controlled primarily by conscious eating and drinking habits dependent on social and cultural influences. For example, you might have a habit of drinking a glass of orange juice and eating a bowl of cereal every morning before school or work.

Figure 3.5.2.3 Regulating Water Intake

Water intake is regulated by a variety of stimuli. When thirst develops and water is consumed, these stimuli subside. Source: image by Allison Calabrese / CC BY 4.0.

Water intake is regulated by a variety of stimuli. When thirst develops and water is consumed these stimuli subside.


  1. Institute of Medicine Panel on Dietary Reference Intakes for Electrolytes and Water. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. The National Academies of Science, Engineering, and Medicine. Washington D.C; 2005: 73-185. http://www.nap.edu/openbook.php?record_id=10925&page=73. Accessed September 22, 2017.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Fundamentals of Health and Physical Activity by Kerri Z. Delaney and Leslie Barker is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.