1.3.4. More About Fats
Lipids are important molecules that serve different roles in the human body. A common misconception is that fat is simply fattening. However, fat is probably the reason we are all here. Throughout history, there have been many instances when food was scarce. Our ability to store excess caloric energy as fat for future usage allowed us to continue as a species during these times of famine. So, normal fat reserves are a signal that metabolic processes are efficient and a person is healthy.Lipids are a family of organic compounds that are mostly insoluble in water. Composed of fats and oils, lipids are molecules that yield high energy and have a chemical composition mainly of carbon, hydrogen, and oxygen. Lipids perform three primary biological functions within the body: they serve as structural components of cell membranes, function as energy storehouses, and function as important signaling molecules.
The three main types of lipids are triglycerides, phospholipids, and sterols. Triglycerides make up more than 95 percent of lipids in the diet and are commonly found in fried foods, vegetable oil, butter, whole milk, cheese, cream cheese, and some meats. Naturally occurring triglycerides are found in many foods, including avocados, olives, corn, and nuts. We commonly call the triglycerides in our food “fats” and “oils.” Fats are lipids that are solid at room temperature, whereas oils are liquid. As with most fats, triglycerides do not dissolve in water. The terms fats, oils, and triglycerides are discretionary and can be used interchangeably. In this chapter when we use the word fat, we are referring to triglycerides.
Phospholipids make up only about 2 percent of dietary lipids. They are water-soluble and are found in both plants and animals. Phospholipids are crucial for building the protective barrier, or membrane, around your body’s cells. In fact, phospholipids are synthesized in the body to form cell and organelle membranes. In blood and body fluids, phospholipids form structures in which fat is enclosed and transported throughout the bloodstream.
Sterols are the least common type of lipid. Cholesterol is perhaps the best well-known sterol. Though cholesterol has a notorious reputation, the body gets only a small amount of its cholesterol through food—the body produces most of it. Cholesterol is an important component of the cell membrane and is required for the synthesis of sex hormones, vitamin D, and bile salts.
Figure 1.3.4.1 Types of Lipids.
The Functions of Lipids in the Body
Storing Energy
The excess energy from the food we eat is digested and incorporated into adipose tissue, or fatty tissue. Most of the energy required by the human body is provided by carbohydrates and lipids. As discussed in the Carbohydrates chapter, glucose is stored in the body as glycogen. While glycogen provides a ready source of energy, lipids primarily function as an energy reserve. As you may recall, glycogen is quite bulky with heavy water content, thus the body cannot store too much for long. Alternatively, fats are packed together tightly without water and store far greater amounts of energy in a reduced space. A fat gram is densely concentrated with energy—it contains more than double the amount of energy than a gram of carbohydrate. Energy is needed to power the muscles for all the physical work and play an average person or child engages in. For instance, the stored energy in muscles propels an athlete down the track, spurs a dancer’s legs to showcase the latest fancy steps, and keeps all the moving parts of the body functioning smoothly.
Unlike other body cells that can store fat in limited supplies, fat cells are specialized for fat storage and are able to expand almost indefinitely in size. An overabundance of adipose tissue can result in undue stress on the body and can be detrimental to your health. A serious impact of excess fat is the accumulation of too much cholesterol in the arterial wall, which can thicken the walls of arteries and lead to cardiovascular disease. Thus, while some body fat is critical to our survival and good health, in large quantities it can be a deterrent to maintaining good health.
Regulating and Signaling
Triglycerides control the body’s internal climate, maintaining constant temperature. Those who don’t have enough fat in their bodies tend to feel cold sooner, are often fatigued, and have pressure sores on their skin from fatty acid deficiency. Triglycerides also help the body produce and regulate hormones. For example, adipose tissue secretes the hormone leptin, which regulates appetite. In the reproductive system, fatty acids are required for proper reproductive health. Women who lack proper amounts may stop menstruating and become infertile. Omega-3 and omega-6 essential fatty acids help regulate cholesterol and blood clotting and control inflammation in the joints, tissues, and bloodstream. Fats also play important functional roles in sustaining nerve impulse transmission, memory storage, and tissue structure. More specifically in the brain, lipids are focal to brain activity in structure and in function. They help form nerve cell membranes, insulate neurons, and facilitate the signaling of electrical impulses throughout the brain.
Insulating and Protecting
Fat tissue can make up 30% or more of body weight. Some of this is made up of visceral fat or adipose tissue surrounding delicate organs. Vital organs such as the heart, kidneys, and liver are protected by visceral fat. The composition of the brain is outstandingly 60 percent fat, demonstrating the major structural role that fat serves within the body. You may be most familiar with subcutaneous fat, or fat underneath the skin. This blanket layer of tissue insulates the body from extreme temperatures and helps keep the internal climate under control. It pads our hands and buttocks and prevents friction, as these areas frequently come in contact with hard surfaces. It also gives the body the extra padding required when engaging in physically demanding activities such as ice- or roller skating, horseback riding, or snowboarding.
Aiding Digestion and Increasing Bioavailability
The dietary fats in the foods we eat break down in our digestive systems and begin the transport of precious micronutrients. By carrying fat-soluble nutrients through the digestive process, intestinal absorption is improved. This improved absorption is also known as increased bioavailability. Fat-soluble nutrients are especially important for good health and exhibit a variety of functions. Vitamins A, D, E, and K—the fat-soluble vitamins—are mainly found in foods containing fat. Some fat-soluble vitamins (such as vitamin A) are also found in naturally fat-free foods such as green leafy vegetables, carrots, and broccoli. These vitamins are best absorbed when combined with foods containing fat. Fats also increase the bioavailability of compounds known as phytochemicals, which are plant constituents such as lycopene (found in tomatoes) and beta-carotene (found in carrots). Phytochemicals are believed to promote health and well-being. As a result, eating tomatoes with olive oil or salad dressing will facilitate lycopene absorption. Other essential nutrients, such as essential fatty acids, are constituents of the fats themselves and serve as building blocks of a cell.
Figure 1.3.4.2 Food Sources of Omega 3s
Note that removing the lipid elements from food also takes away the food’s fat-soluble vitamin content. When products such as grain and dairy are processed, these essential nutrients are lost. Manufacturers replace these nutrients through a process called enrichment. Foods that have been fortified have undergone an enrichment process. Source: The Functions of Lipids in the Body
The Role of Lipids in Food
High Energy Source
Fat-rich foods naturally have a high caloric density. Foods that are high in fat contain more calories than foods high in protein or carbohydrates. As a result, high-fat foods are a convenient source of energy. For example, 1 gram of fat or oil provides 9 kilocalories of energy, compared with 4 kilocalories found in 1 gram of carbohydrate or protein. Depending on the level of physical activity and on nutritional needs, fat requirements vary greatly from person to person. When energy needs are high, the body welcomes the high-caloric density of fats. For instance, infants and growing children require proper amounts of fat to support normal growth and development. If an infant or child is given a low-fat diet for an extended period, growth and development will not progress normally. Other individuals with high-energy needs are athletes, people who have physically demanding jobs/ lifestyles, and those recuperating from illness.
When the body has used all of its calories from carbohydrates (this can occur after just twenty minutes of exercise), it initiates fat usage. A professional swimmer must consume large amounts of food energy to meet the demands of swimming long distances, so eating fat-rich foods makes sense. In contrast, if a person who leads a sedentary lifestyle eats the same high-density fat foods, they will intake more fat calories than their body requires within just a few bites. Use caution—consumption of calories over and beyond energy requirements is a contributing factor to obesity.
Smell and Taste
Fat contains dissolved compounds that contribute to mouth-watering aromas and flavors. Fat also adds texture to food. Baked foods are supple and moist. Frying foods locks in flavor and lessens cooking time. How long does it take you to recall the smell of your favorite food cooking? What would a meal be without that savory aroma to delight your senses and heighten your preparedness for eating a meal?
Fat plays another valuable role in nutrition. Fat contributes to satiety, or the sensation of fullness. When fatty foods are swallowed the body responds by enabling the processes controlling digestion to retard the movement of food along the digestive tract, thus promoting an overall sense of fullness. Oftentimes before the feeling of fullness arrives, people overindulge in fat-rich foods, finding the delectable taste irresistible. Indeed, the very things that make fat-rich foods attractive also make them a hindrance to maintaining a healthful diet.
Tools for Change
Source: The Role of Lipids in Food
There are many sources of omega-3 foods.
It is important to strike a proper balance between omega-3 and omega-6 fats in your diet. Research suggests that a diet that is too high in omega-6 fats distorts the balance of proinflammatory agents, promoting chronic inflammation and causing the potential for health problems such as asthma, arthritis, allergies, or diabetes. Omega-6 fats compete with omega-3 fats for enzymes and will actually replace omega-3 fats. The typical western diet is characterized by an excessive consumption of foods high in omega-6 fatty acids. To gain proper balance between the two, increase your omega-3 fat intake by eating more fatty fish or other sources of omega-3 fatty acids at least two times per week.
Degrees of Saturation
Fatty acid chains are held together by carbon atoms that attach to each other and to hydrogen atoms.
Foods that have a high percentage of saturated fatty acids tend to be solid at room temperature. Examples of these are fats found in chocolate and meat. Foods rich in unsaturated fatty acids, such as olive oil tend to be liquid at room temperature. Flaxseed oil is rich in alpha-linolenic acid, which is an unsaturated fatty acid and becomes a thin liquid at room temperature.
If you decide to limit or redirect your intake of fat products, then choosing unsaturated fat is more beneficial than choosing a saturated fat. This choice is easy enough to make because unsaturated fats tend to be liquid at room temperature (for example, olive oil) whereas saturated fats tend to be solid at room temperature (for example, butter). Avocados are rich in unsaturated fats. Most vegetable and fish oils contain high quantities of polyunsaturated fats. Olive oil and canola oil are also rich in monounsaturated fats.
Conversely, tropical oils are an exception to this rule in that they are liquid at room temperature yet high in saturated fat. Palm oil (often used in food processing) is highly saturated and has been proven to raise blood cholesterol. Shortening, margarine, and commercially prepared products (in general) report to use only vegetable-derived fats in their processing. But even so, much of the fat they use may be in the saturated and trans fat categories.
Trans Fatty Acids
Hydrogenation is the process of adding hydrogen to the carbon double bonds, thus making the fatty acid saturated (or less unsaturated, in the case of partial hydrogenation). This is how vegetable oils are converted into semisolid fats for use in the manufacturing process.
According to the ongoing Harvard Nurses’ Health Study, trans fatty acids have been associated with increased risk for coronary heart disease because of the way they negatively impact blood cholesterol levels.[1]
Interestingly, some naturally occurring trans fats do not pose the same health risks as their artificially engineered counterparts. These trans fats are found in ruminant animals such as cows, sheep, and goats, resulting in trans fatty acids being present in our meat, milk, and other dairy product supply. Reports from the US Department of Agriculture (USDA) indicate that these trans fats comprise 15 to 20 percent of the total trans-fat intake in our diet. While we know that trans fats are not exactly harmless, it seems that any negative effect naturally occurring trans fats have are counteracted by the presence of other fatty acid molecules in these animal products, which work to promote human health.
Nonessential and Essential Fatty Acids
Fatty acids are vital for the normal operation of all body systems. The circulatory system, respiratory system, immune system, brain, skin and other organs require fatty acids for proper function. The body is capable of synthesizing most of the fatty acids it needs from food. These fatty acids are known as nonessential fatty acids. However, there are some fatty acids that the body cannot synthesize and these are called essential fatty acids. It is important to note that nonessential fatty acids doesn’t mean unimportant; the classification is based solely on the ability of the body to synthesize the fatty acid.
Essential fatty acids must be obtained from food. They fall into two categories—omega-3 and omega-6. The 3 and 6 refer to the position of the first carbon double bond and the omega refers to the methyl end of the chain. Omega-3 and omega-6 fatty acids are precursors to important compounds called eicosanoids. Eicosanoids are powerful hormones that control many other hormones and important body functions, such as the central nervous system and the immune system. Eicosanoids derived from omega-6 fatty acids are known to increase blood pressure, immune response, and inflammation. In contrast, eicosanoids derived from omega-3 fatty acids are known to have heart-healthy effects. Given the contrasting effects of the omega-3 and omega-6 fatty acids, a proper dietary balance between the two must be achieved to ensure optimal health benefits.
Essential fatty acids play an important role in the life and death of cardiac cells, immune system function, and blood pressure regulation. Docosahexaenoic acid (DHA) is an omega-3 essential fatty acid shown to play important roles in synaptic transmission in the brain during fetal development.
Some excellent sources of omega-3 and omega-6 essential fatty acids are fish, flaxseed oil, hemp, walnuts, and leafy vegetables. Because these essential fatty acids are easily accessible, essential fatty acid deficiency is extremely rare.
Fatty Acid Types in the Body
The fatty-acid profile of the diet directly correlates to the tissue lipid profile of the body. It may not solely be the quantity of dietary fat that matters. More directly, the type of dietary fat ingested has been shown to affect body weight, composition, and metabolism. The fatty acids consumed are often incorporated into the triglycerides within the body. Evidence confirms that saturated fatty acids are linked to higher rates of weight retention when compared to other types of fatty acids. Alternatively, the fatty acids found in fish oil are proven to reduce the rate of weight gain as compared to other fatty acids.[2]
Phospholipids
In the body phospholipids bind together to form cell membranes. Phospholipids are ideal emulsifiers that can keep oil and water mixed. Emulsions are mixtures of two liquids that do not mix. Without emulsifiers, the fat and water content would be somewhat separate within food. Lecithin (phosphatidylcholine), found in egg yolk, honey, and mustard, is a popular food emulsifier. Mayonnaise demonstrates lecithin’s ability to blend vinegar and oil to create the stable, spreadable condiment that so many enjoy. Food emulsifiers play an important role in making the appearance of food appetizing. Adding emulsifiers to sauces and creams not only enhances their appearance but also increases their freshness.
Lecithin’s crucial role within the body is clear, because it is present in every cell throughout the body; 28 percent of brain matter is composed of lecithin and 66 percent of the fat in the liver is lecithin. Many people attribute health-promoting properties to lecithin, such as its ability to lower blood cholesterol and aid with weight loss. There are several lecithin supplements on the market broadcasting these claims. However, as the body can make most phospholipids, it is not necessary to consume them in a pill. The body is capable of making all of the lecithin that it needs.
Sterols
Sterols have a very different structure from triglycerides and phospholipids.
Cholesterol is the best-known sterol because of its role in heart disease. It forms a large part of the plaque that narrows the arteries in atherosclerosis. In stark contrast, cholesterol does have specific beneficial functions to perform in the body. Like phospholipids, cholesterol is present in all body cells as it is an important substance in cell membrane structure. Approximately 25 percent of cholesterol in the body is localized in brain tissue. Cholesterol is used in the body to make a number of important things, including vitamin D, glucocorticoids, and the sex hormones, progesterone, testosterone, and estrogens. Notably, the sterols found in plants resemble cholesterol in structure. However, plant sterols inhibit cholesterol absorption in the human body, which can contribute to lower cholesterol levels.
Although cholesterol is preceded by its infamous reputation, it is clearly a vital substance in the body that poses a concern only when there is excess accumulation of it in the blood. Like lecithin, the body can synthesize cholesterol.
Digestion and Absorption of Lipids
Lipids are large molecules and generally are not water-soluble. Like carbohydrates and protein, lipids are broken into small components for absorption. Since most of our digestive enzymes are water-based, how does the body break down fat and make it available for the various functions it must perform in the human body?
From the Mouth to the Stomach
The first step in the digestion of triglycerides and phospholipids begins in the mouth as lipids encounter saliva. Next, the physical action of chewing coupled with the action of emulsifiers enables the digestive enzymes to do their tasks. These actions cause the fats to become more accessible to the digestive enzymes. As a result, the fats become tiny droplets and separate from the watery components.
The stomach’s churning and contractions help to disperse the fat molecules, while the diglycerides derived in this process act as further emulsifiers. However, even amid all of this activity, very little fat digestion occurs in the stomach.
Going to the Bloodstream
As stomach contents enter the small intestine, the digestive system sets out to manage a small hurdle, namely, to combine the separated fats with its own watery fluids. The solution to this hurdle is bile. Bile contains bile salts, lecithin, and substances derived from cholesterol so it acts as an emulsifier. It attracts and holds onto fat while it is simultaneously attracted to and held on to by water. Emulsification increases the surface area of lipids over a thousand-fold, making them more accessible to the digestive enzymes.
Cholesterols are poorly absorbed when compared to phospholipids and triglycerides. Cholesterol absorption is aided by an increase in dietary fat components and is hindered by high fiber content. This is the reason that a high intake of fiber is recommended to decrease blood cholesterol. Foods high in fiber such as fresh fruits, vegetables, and oats can bind bile salts and cholesterol, preventing their absorption and carrying them out of the colon.
Figure 1.3.4.3 Cholesterol and Soluble Fiber
Storing and Using Body Fat
Before the prepackaged food industry, fitness centers, and weight-loss programs, our ancestors worked hard to even locate a meal. They made plans, not for losing those last ten pounds to fit into a bathing suit for vacation, but rather for finding food. Today, this is why we can go long periods without eating, whether we are sick with a vanished appetite, our physical activity level has increased, or there is simply no food available. Our bodies reserve fuel for a rainy day.
One way the body stores fat was previously touched upon in the Carbohydrates chapter. The body transforms carbohydrates into glycogen that is in turn stored in the muscles for energy. When the muscles reach their capacity for glycogen storage, the excess is returned to the liver, where it is converted into triglycerides and then stored as fat.
In a similar manner, much of the triglycerides the body receives from food is transported to fat storehouses within the body if not used for producing energy.
Muscle cells may also take up the fatty acids and use them for muscular work and generating energy. When a person’s energy requirements exceed the amount of available fuel presented from a recent meal or extended physical activity has exhausted glycogen energy reserves, fat reserves are retrieved for energy utilization.
Understanding Blood Cholesterol
You may have heard of the abbreviations LDL and HDL with respect to heart health. These abbreviations refer to low-density lipoprotein (LDL) and high-density lipoprotein (HDL), respectively. Lipoproteins are characterized by size, density, and composition. As the size of the lipoprotein increases, the density decreases. This means that HDL is smaller than LDL. Why are they referred to as “good” and “bad” cholesterol? What should you know about these lipoproteins?
Major Lipoproteins
LDLs. As low-density lipoproteins are commonly known as the “bad cholesterol” it is imperative that we understand their function in the body so as to make healthy dietary and lifestyle choices. LDLs carry cholesterol and other lipids from the liver to tissue throughout the body. LDLs are comprised of very small amounts of triglycerides, and house over 50 percent cholesterol and cholesterol esters. How does the body receive the lipids contained therein? As the LDLs deliver cholesterol and other lipids to the cells, each cell’s surface has receptor systems specifically designed to bind with LDLs. Circulating LDLs in the bloodstream bind to these LDL receptors and are consumed. Once inside the cell, the LDL is taken apart and its cholesterol is released. In liver cells these receptor systems aid in controlling blood cholesterol levels as they bind the LDLs. A deficiency of these LDL binding mechanisms will leave a high quantity of cholesterol traveling in the bloodstream, which can lead to heart disease or atherosclerosis. Diets rich in saturated fats will prohibit the LDL receptors which, are critical for regulating cholesterol levels.
HDLs. High-density lipoproteins are responsible for carrying cholesterol out of the bloodstream and into the liver, where it is either reused or removed from the body with bile. HDLs have a very large protein composition coupled with low cholesterol content (20 to 30 percent) compared to the other lipoproteins. Hence, these high-density lipoproteins are commonly called “good cholesterol.”
Blood Cholesterol Recommendations
In short, elevated LDL blood lipid profiles indicate an increased risk of heart attack, while elevated HDL blood lipid profiles indicate a reduced risk. The University of Maryland Medical Center reports that omega-3 fatty acids promote lower total cholesterol and lower triglycerides in people with high cholesterol.[3]
It is suggested that people consume omega-3 fatty acids such as alpha-linolenic acid in their diets regularly. Polyunsaturated fatty acids are especially beneficial to consume because they both lower LDL and elevate HDL, thus contributing to healthy blood cholesterol levels. The study also reveals that saturated and trans fatty acids serve as catalysts for the increase of LDL cholesterol. Additionally, trans fatty acids decrease HDL levels, which can impact negatively on total blood cholesterol.
Tools for Change
Being conscious of the need to reduce cholesterol means limiting the consumption of saturated fats and trans fats. Remember that saturated fats found in some meat, whole-fat dairy products, and tropical oils elevate your total cholesterol. Trans fats, such as the ones often found in margarines, processed cookies, pastries, crackers, fried foods, and snack foods also elevate your cholesterol levels. Read and select from the following suggestions as you plan ahead:
- Soluble fiber reduces cholesterol absorption in the bloodstream. Try eating more oatmeal, oat bran, kidney beans, apples, pears, citrus fruits, barley, and prunes.
- Fatty fish are heart-healthy due to high levels of omega-3 fatty acids that reduce inflammation and lower cholesterol levels. Consume mackerel, lake trout, herring, sardines, tuna, salmon, and halibut. Grilling or baking is the best to avoid unhealthy trans fats that could be added from frying oil.
- Walnuts, almonds, peanuts, hazelnuts, pecans, some pine nuts, and pistachios all contain high levels of unsaturated fatty acids that aid in lowering LDL. Make sure the nuts are raw and unsalted. Avoid sugary or salty nuts. One ounce each day is a good amount.
- Olive oil contains a strong mix of antioxidants and monounsaturated fat, and may lower LDL while leaving HDL intact. Two tablespoons per day in place of less healthy saturated fats may contribute to these heart-healthy effects without adding extra calories. Extra virgin olive oil promises a greater effect, as the oil is minimally processed and contains more heart-healthy antioxidants.
Testing Your Lipid Profile
The danger of consuming foods rich in cholesterol and saturated and trans fats cannot be overemphasized. Regular testing can provide the foreknowledge necessary to take action to help prevent any life-threatening events.
Current guidelines recommend testing for anyone over age twenty. If there is family history of high cholesterol, your healthcare provider may suggest a test sooner than this. Testing calls for a blood sample to be drawn after nine to twelve hours of fasting for an accurate reading. (By this time, most of the fats ingested from the previous meal have circulated through the body and the concentration of lipoproteins in the blood will be stabilized.)
- Introduction to “Fats and Cholesterol. Harvard T.H. Chan School of Public Health. http://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/fats-full-story/#references. Updated 2017. Accessed September 28, 2017. ↵
- Mori T et al. Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice. The Journal of Nutrition. 2007; 137(12), 2629-34. http://www.ncbi.nlm.nih.gov/pubmed/18029475. Accessed September 22, 2017. ↵
- Doctors Should Consider Prescribing Purified Omega-3 Capsules to Reduce Heart Risks in Those with Moderately High Triglyceride Levels. University of Maryland Medical Center. http://www.umm.edu/altmed/articles/omega-3-000316.htm. Updated August 19, 2019. Accessed September 12, 2021. ↵