Chapter 10: Inferential Statistics
Matthias Mehl and his colleagues, in their study of sex differences in talkativeness, found that the women in their sample spoke a mean of 16,215 words per day and the men a mean of 15,669 words per day (Mehl, Vazire, Ramirez-Esparza, Slatcher, & Pennebaker, 2007)1. But despite this sex difference in their sample, they concluded that there was no evidence of a sex difference in talkativeness in the population. Recall also that Allen Kanner and his colleagues, in their study of the relationship between daily hassles and symptoms, found a correlation of +.60 in their sample (Kanner, Coyne, Schaefer, & Lazarus, 1981)2. But they concluded that this finding means there is a relationship between hassles and symptoms in the population. This assertion raises the question of how researchers can say whether their sample result reflects something that is true of the population.
The answer to this question is that they use a set of techniques called inferential statistics, which is what this chapter is about. We focus, in particular, on null hypothesis testing, the most common approach to inferential statistics in psychological research. We begin with a conceptual overview of null hypothesis testing, including its purpose and basic logic. Then we look at several null hypothesis testing techniques for drawing conclusions about differences between means and about correlations between quantitative variables. Finally, we consider a few other important ideas related to null hypothesis testing, including some that can be helpful in planning new studies and interpreting results. We also look at some long-standing criticisms of null hypothesis testing and some ways of dealing with these criticisms.
LEARNING OBJECTIVES
- Understand the logic underpinning hypothesis testing
- Understand the concept of alpha-value and its role in hypothesis testing
- Be familiar with the concept of p-value and its role in hypothesis testing
- Understand under what circumstances it would be appropriate to use the t-test, analysis of variance, correlation analysis, and regression analysis
- Be familiar with the role of “statistical power” in hypothesis testing
- Be aware of the common criticisms of null hypothesis testing