Threats to Validity
Internal validity and external validity are conceptually linked. Internal validity refers to the degree to which the intervention causes its intended outcomes, and external validity refers to how well that relationship applies to different groups and circumstances. There are a number of factors that may influence a study’s validity. You might consider these threats to all be spurious variables, as we discussed at the beginning of this section. Each threat proposes another factor that is changing the relationship between intervention and outcome. The threats introduce error and bias into the experiment.
Throughout this chapter, we reviewed the importance of experimental and control groups. These groups must be comparable in order for experimental design to work. Comparable groups are groups that are similar across factors important for the study. Researchers can help establish comparable groups by using probability sampling, random assignment, or matching techniques. Control or comparison groups provide a counterfactual—what would have happened to my experimental group had I not given them my intervention? Two very different groups would not allow you to answer that question. Intuitively, we all know that no two people are exactly the same. So, no groups are ever perfectly comparable. What’s important is ensuring groups are comparable along the variables relevant to the research project.
In our restaurant example, if one of my groups had far more vegetarians or people with gluten issues, it might influence how satisfied they were with my restaurant. My groups, in that case, would not be comparable. Researchers also account for this by measuring other variables, like dietary preference, and controlling for their effects statistically, after the data are collected. Similarly, if I were to pick out people I thought would “really like” my restaurant and assign them to the experimental group, I would be introducing selection bias into my sample. This is another reason experimenters use random assignment, so conscious and unconscious bias do not influence to which group a participant is assigned.
Experimenters themselves are often the source of threats to validity. They may choose measures that do not accurately measure participants or implement the measure in a way that biases participant responses in one direction or another. Researchers may, just by the very act of conducting an experiment, influence participants to perform differently. Experiments are different from participants’ normal routines. The novelty of a research environment or experimental treatment may cause them to expect to feel differently, independently of the actual intervention. You have likely heard of the placebo effect, in which a participant feels better, despite having received no intervention at all.
Researchers may also introduce error by expecting participants in each group to behave differently. For the experimental group, researchers may expect them to feel better and may give off conscious or unconscious cues to participants that influence their outcomes. Control groups will be expected to fare worse, and research staff could cue participants that they should feel worse than they otherwise would. For this reason, researchers often use double-blind designs wherein research staff interacting with participants are unaware of who is in the control or experimental group. Proper training and supervision are also necessary to account for these and other threats to validity. If proper supervision is not applied, research staff administering the control group may try to equalize treatment or engage in a rivalry with research staff administering the experimental group (Engel & Schutt, 2016).
No matter how tightly the researcher controls the experiment, participants are humans and are therefore curious, problem-solving creatures. Participants who learn they are in the control group may react by trying to outperform the experimental group or by becoming demoralized. In either case, their outcomes in the study would be different had they been unaware of their group assignment. Participants in the experimental group may begin to behave differently or share insights from the intervention with individuals in the control group. Whether through social learning or conversation, participants in the control group may receive parts of the intervention of which they were supposed to be unaware. Experimenters, as a result, try to keep experimental and control groups as separate as possible. Inside a laboratory study, this is significantly easier as the researchers control access and timing at the facility. In agency-based research, this problem is more complicated. If your intervention is good, your participants in the experimental group may impact the control group by behaving differently and sharing the insights they’ve learned with their peers. Agency-based researchers may locate experimental and control conditions at separate offices with separate treatment staff to minimize the interaction between their participants.