The Logic of Experimental Design

As we discussed at the beginning of this chapter, experimental design is commonly understood and implemented informally in everyday life. Trying out a new restaurant, dating a new person—we often term these experiments. As you’ve learned over the past two sections, in order for something to be a true experiment, or even a quasi- or pre-experiment, you must rigorously apply the various components of experimental design. A true experiment for trying a new restaurant would include recruitment of a large enough sample, random assignment to control and experimental groups, pretesting and posttesting, as well as using clearly and objectively defined measures of satisfaction with the restaurant.

Social scientists use this level of rigor and control because they try to maximize the internal validity of their experiment. Internal validity is the confidence researchers have about whether their intervention produced variation in their dependent variable. Thus, experiments are attempts to establish causality between two variables—your treatment and its intended outcome. Causal relationships must establish four criteria: covariation, plausibility, temporality, and non-spuriousness.

The logic and rigor experimental design allows for causal relationships to be established. Experimenters can assess covariation on the dependent variable through pre- and posttests. The use of experimental and control conditions ensures that some people receive the intervention and others do not, providing variation in the independent variable. Moreover, since the researcher controls when the intervention is administered, she can be assured that changes in the independent variable (the treatment) happened before changes the dependent variable (the outcome). In this way, experiments assure temporality. In our restaurant experiment, we would know through assignment experimental and control groups that people varied in the restaurant they attended. We would also know whether their level of satisfaction changed, as measured by the pre- and posttest. We would also know that changes in our diners’ satisfaction occurred after they left the restaurant, not before they walked in because of the pre- and posttest.

Experimenters will also have a plausible reason why their intervention would cause changes in the dependent variable. Usually, a theory or previous empirical evidence should indicate the potential for a causal relationship. Perhaps we found a national poll that found the type of food our experimental restaurant served, let’s say pizza, is the most popular food in America. Perhaps this restaurant has good reviews on Yelp or Google. This evidence would give us a plausible reason to establish our restaurant as causing satisfaction.

One of the most important features of experiments is that they allow researchers to eliminate spurious variables. True experiments are usually conducted under strictly controlled laboratory conditions. The intervention must be given in the same way to each person, with a minimal number of other variables that might cause their posttest scores to change. In our restaurant example, this level of control might prove difficult. We cannot control how many people are waiting for a table, whether participants saw someone famous there, or if there is bad weather. Any of these factors might cause a diner to be less satisfied with their meal. These spurious variables may cause changes in satisfaction that have nothing to do with the restaurant itself, an important problem in real-world research. For this reason, experiments use the laboratory environment try to control as many aspects of the research process as possible. Researchers in large experiments often employ clinicians or other research staff to help them. Researchers train their staff members exhaustively, provide pre-scripted responses to common questions, and control the physical environment of the lab so each person who participates receives the exact same treatment.

Experimental researchers also document their procedures, so that others can review how well they controlled for spurious variables. A good example of this concept is Bruce Alexander’s Rat Park (1981) experiments. Much of the early research conducted on addictive drugs, like heroin and cocaine, was conducted on animals other than humans, usually mice or rats. While this may seem strange, the systems of our mammalian relatives are similar enough to humans that causal inferences can be made from animal studies to human studies. It is certainly unethical to deliberately cause humans to become addicted to cocaine and measure them for weeks in a laboratory, but it is currently more ethically acceptable to do so with animals. There are specific ethical processes for animal research, similar to an IRB review.

The scientific consensus up until Alexander’s experiments was that cocaine and heroin were so addictive that rats, if offered the drugs, would consume them repeatedly until they perished. Researchers claimed this behavior explained how addiction worked in humans, but Alexander was not so sure. He knew rats were social animals and the experimental procedure from previous experiments did not allow them to socialize. Instead, rats were kept isolated in small cages with only food, water, and metal walls. To Alexander, social isolation was a spurious variable, causing changes in addictive behavior not due to the drug itself. Alexander created an experiment of his own, in which rats were allowed to run freely in an interesting environment, socialize and mate with other rats, and of course, drink from a solution that contained an addictive drug. In this environment, rats did not become hopelessly addicted to drugs. In fact, they had little interest in the substance.

To Alexander, the results of his experiment demonstrated that social isolation was more of a causal factor for addiction than the drug itself. This makes intuitive sense to me. If I were in solitary confinement cell for most of my life, the escape of an addictive drug would seem more tempting than if I were in my natural environment with friends, family, and activities. One challenge with Alexander’s findings is that subsequent researchers have had mixed success replicating his findings (e.g., Petrie, 1996; Solinas, Thiriet, El Rawas, Lardeux, & Jaber, 2009). Replication involves conducting another researcher’s experiment in the same manner and seeing if it produces the same results. If the causal relationship is real, it should occur in all (or at least most) replications of the experiment.

One of the defining features of experiments is that they report their procedures diligently, which allows for easier replication. Recently, researchers at the Reproducibility Project have caused a significant controversy in social science fields like psychology (Open Science Collaboration, 2015). In one study, researchers attempted reproduce the results of 100 experiments published in major psychology journals between 2008 and the present. What they found was shocking. The results of only 36% of the studies were reproducible. Despite coordinating closely with the original researchers, the Reproducibility Project found that nearly two-thirds of psychology experiments published in respected journals were not reproducible. The implications of the Reproducibility Project are staggering, and social scientists are coming up with new ways to ensure researchers do not cherry-pick data or change their hypotheses, simply to get published.

Returning to Alexander’s Rat Park study, consider what the implications of his experiment were to a substance abuse professional. The conclusions he drew from his experiments on rats were meant to generalize to the population of people with substance use disorders. Experiments seek to establish external validity, which is the degree to which their conclusions generalize to larger populations and different situations. Alexander argues his conclusions about addiction and social isolation help us understand why people living in deprived, isolated environments will often become addicted to drugs more often than those in more enriching environments. Similarly, earlier rat researchers argued their results showed these drugs were instantly addictive, often to the point of death.

Neither study will match up perfectly with real life. One may encounter many individuals who may have fit into Alexander’s social isolation model, but social isolations for humans is complex. If individuals live in environments with other sociable humans, work jobs, and have romantic relationships, how isolated are they? On the other hand, many may face structural racism, poverty, trauma, and other challenges that may contribute to social isolation. Alexander’s work helps us understand some of these experiences, but the explanation was incomplete. The real world is much more complicated than the experimental conditions in Rat Park, just as humans are more complex than rats.

Social scientists are especially attentive to how social context shapes social life. So, we are likely to point out a specific disadvantage of experiments. They are rather artificial. How often do real-world social interactions occur in the same way that they do in a lab? Experiments that are conducted in community settings may not be as subject to artificiality, though then their conditions are less easily controlled. This relationship demonstrates the tension between internal and external validity. The more researchers tightly control the environment to ensure internal validity, the less they can claim external validity and that their results are applicable to different populations and circumstances. Correspondingly, researchers whose settings are just like the real world will be less able to ensure internal validity, as there are many factors that could pollute the research process. This is not to suggest that experimental research cannot have external validity, but experimental researchers must always be aware that external validity problems can occur and be forthcoming in their reports of findings about this potential weakness.

Chapter 8: Experimental Design is adapted from Matthew DeCarlo (2018) Scientific Inquiry in Social Work and is licensed under a CC BY-NC-SA Licence.

License

Share This Book