1 Anthropologists as Scientists

Katie Nelson, Ph.D., Inver Hills Community College

Lara Braff, Ph.D., Grossmont College

Beth Shook, Ph.D., California State University, Chico

Kelsie Aguilera, M.A., University of Hawai‘i: Leeward Community College

This chapter is a section of a revision from “Chapter 1: Introduction to Biological Anthropology” by Katie Nelson, Lara Braff, Beth Shook, and Kelsie Aguilera. In Explorations: An Open Invitation to Biological Anthropology, first edition, edited by Beth Shook, Katie Nelson, Kelsie Aguilera, and Lara Braff, which is licensed under CC BY-NC 4.0.

Learning Objectives

  • Explain key components of the scientific method.
  • Differentiate between hypotheses, theories, and laws.
  • Differentiate science from other ways of knowing.

Anthropologists as Scientists

Biological anthropologists use the scientific method as a way of learning about the world around them. Many people think of science as taking place in a sterile laboratory, but in biological anthropology it is just as likely to occur somewhere else, such as at a research station in Ethiopia, a field site in Tanzania, or a town in El Salvador. To understand how information in this field is established, it is important to recognize what science is and is not, as well as to understand how the scientific method actually works.

Recognizing Science

Science combines our natural curiosity with our ability to experiment so we can understand the world around us and address needs in our communities. Thanks to science, meteorologists can predict the weather, it takes a relatively small number of farmers to grow enough food to feed our large population, our medicine continues to improve, and over half of the world’s population owns a cell phone.

Anyone can participate in science—not just academics. In fact, children are often some of the best scientists (Figure 1.15). An early, well-known psychologist, Jean Piaget (1896–1980), argued that a child is a “little scientist,” internally motivated to experiment and explore their world. This can be seen when an infant repeatedly drops a toy to see if the parent will pick it up, or when a four-year-old sincerely asks “why” again and again. Maria Montessori (1870–1952), an Italian doctor and educator, was interested in how children learn. Through her research, she also recognized that children have natural scientific tendencies. Children have a desire to explore their environment, ask questions, use their imaginations, and learn by doing. In 1907, Montessori opened a school to foster children’s natural desire to learn this way. This developed a child-centered teaching method that has spread around the world and is being used in over 22,000 schools today. In anthropology and other scientific fields, the process of learning is more formalized, but scientists still benefit from the curiosity that motivates children and still experience the thrill of discovery.

Toddler presses their hands and face against a large window.
Figure 1.15: Children are true scientists as they explore and test the world around them through sight and touch. Credit: Child Scientist at Window original to Explorations: An Open Invitation to Biological Anthropology (2nd ed.) by Beth Shook is under a CC BY-NC 4.0 License.

Science represents both a body of knowledge and the process for learning that knowledge (the scientific method). Scientific claims can, at times, be difficult to distinguish from other information. Science also incorporates a broad range of methods to collect data, adding to the difficulty of knowing what science really is. This section will address four key characteristics that help us define and recognize science: (1) science studies the physical and natural world and how it works, (2) scientific explanations must be testable and refutable, (3) science relies on empirical (observable) evidence, and (4) science involves the scientific community.

Science Studies the Physical and Natural World and How It Works

Our physical and natural universe ranges from very small (e.g., electrons) to very large (e.g., Earth itself and the galaxies beyond it). Scientists often design their research to address how and why natural forces influence our physical and natural world. In biological anthropology, we focus our questions on humans as well as other primate species, both living and extinct. We ask questions like: What influences a primate’s diet? Why do humans walk on two legs? And did Neanderthals and modern humans interbreed?

There are very few questions that are considered off-limits in science. That being said, the scope of scientific investigation is generally focused on natural phenomena and natural processes and excludes the supernatural. People often regard the supernatural, whether it be a ghost, luck, or god, as working outside the laws of the universe, which makes it difficult to study with a scientific approach. Science neither supports nor contradicts the existence of supernatural powers—it simply does not include the supernatural in its explanations.

Scientific Explanations Must Be Testable and Refutable

The goal of scientists is to identify a research question and then identify the best answer(s) to that question. For example, an excavation of a cemetery may reveal that many people buried there had unhealed fractures when they died, leading the anthropologist to ask: “Why did this population experience more broken bones than their neighbors?” There might be multiple explanations to address this question, such as a lack of calcium in their diets, participation in dangerous work, or violent conflict with neighbors; these explanations are considered hypotheses. In the past, you might have learned that a hypothesis is an “educated guess,” but in science, hypotheses are much more than that. A scientific hypothesis reflects a scientist’s knowledge-based experiences and background research. A hypothesis is better defined as an explanation of observed facts; hypotheses explain how and why observed phenomena are the way they are.

Scientific hypotheses should generate expectations that are testable. For example, if the best explanation regarding our cemetery population was that they were experiencing violent conflict with their neighbors, we should expect to find clues, like weapons or protective walls around their homes, in the anthropological record to support this. Alternatively, if this population did not experience violent conflict with their neighbors, we may eventually be able to gather enough evidence to rule out (refute) this explanation. An important part of science is rigorous testing. Science does not prove any hypothesis. However, a strong hypothesis is one that has strong supporting evidence and has not yet been disproven.

Science Relies on Empirical Evidence

The word empirical refers to experience that is verified by observation (rather than evidence that derives primarily from logic or theory). In anthropology, much evidence about our world is collected by observation through fieldwork or in a laboratory. The most reliable studies are based on accurately and precisely recorded observations. Scientists value studies that explain exactly what methods were used so that their data collection and analysis processes are reproducible. This allows for other scientists to expand the study or provide new insights into the observations.

Science Involves the Scientific Community

Contrary to many Hollywood science fiction films, good science is not carried out in isolation in a secret basement laboratory; rather, it is done as part of a community. Scientists pay attention to what others have done before them, present new ideas to each other, and publish in scientific journals. Most scientific research is collaborative, bringing together researchers with different types of specialized knowledge to work on a shared project. Today, thanks to technology, scientific projects can bring together researchers from different backgrounds, experiences, locations, and perspectives. Most big anthropological questions such as “Where did modern humans develop?,” “What genetic changes make us uniquely human?,” and “How did cooperative behavior evolve?” cannot be addressed with one simple study but are tested with different lines of evidence and by different scientists over time.

Working within a scientific community supports one of the most valuable aspects of science: that science is self-correcting. Science that is openly communicated with others allows for a system with checks and balances: competing explanations can be proposed and questionable studies can be reevaluated. Ultimately, the goal is that through science the best explanations will stand the test of time.

How Science Works: The Scientific Method

Most students have learned the scientific method as a simple linear, or perhaps circular, process (see, e.g., Figure 1.16). Typically, the process is said to begin with making observations about the natural world. This leads to the development of a scientific hypothesis. From the hypothesis a set of predictions can be made, which are then tested by experimentation or by making additional observations. Scientific predictions are often phrased as “if… then…” statements, such as “If hypothesis A is true, then this experiment will show outcome B.” The results of a scientific study should then either support or reject the hypothesis.

Five text boxes depict the steps in the scientific method.
Figure 1.16: Simple depiction of the scientific method. Credit: Simple depiction of the scientific method (Figure 1.23) original to Explorations: An Open Invitation to Biological Anthropology is under a CC BY-NC 4.0 License.

This simple version of the scientific method is valuable because it highlights the key aspects that should be present in any scientific research experiment or scientific paper. However, this simplistic view does not accurately represent the dynamic and creative side of science, nor does it identify the complex steps that are incorporated into a scientist’s routine.

Circles and arrows depict the more complex process of how science works.
Figure 1.17: Complex flow of the scientific method. A full text description is available from Understanding Science. Credit: Complex Science Flowchart (2022) by Understanding Science, University of California Museum of Paleontology is used by permission and available here under a CC BY-NC 4.0 License.

Figure 1.17 provides an alternative representation of the scientific method that emphasizes the many paths to scientific discovery. While still incorporating the key components of making observations, testing ideas, and interpreting results, this chart shows that scientific ideas have many possible starting points and influences, and scientists often repeat steps and circle back around. Gathering evidence does not always rest on experiments in the laboratory. Evaluating data is not always clear-cut, and results are sometimes surprising or inconclusive. Many important discoveries were in fact made by mistake. For example, engineer Percy Spencer accidentally melted a chocolate bar in his pocket with a magnetron, which became the first microwave, and Spencer Silver invented the adhesive for 3M Post-it ® notes while trying to develop a strong glue. The real scientific process is more similar to the philosophy of the animated television character Ms. Frizzle from The Magic School Bus, “Take chances, make mistakes, get messy.”

Two key components lacking in the simple version of the scientific method are exploration and discovery. There are many reasons that a scientist might choose a particular research question: they may be motivated by personal experience, struck by something they read, or inspired by a student’s question in class. Often scientific research reveals more questions than answers, so experienced researchers rarely lack problems to solve. But identifying a research question is just part of the process; most scientists spend more time exploring the literature, sharing ideas, asking questions, and planning their research project than conducting the test itself.

Science itself is a social enterprise that is influenced by cultural issues and values, as well as funding priorities. For example, corporations are the biggest funders of scientific research, followed by government agencies such as the National Science Foundation (which also fund many research projects done at colleges and universities). Those organizations have great influence on what is considered valuable research at any given time. For example, the World Health Organization (WHO) has classified many diseases as “neglected tropical diseases,” including dengue, leprosy, rabies, and hookworm. Together these diseases affect an estimated one billion people, mostly in impoverished areas. While these debilitating tropical diseases can be as deadly as diseases that receive more attention, like AIDS and tuberculosis, they receive comparatively little funding due to political priorities (Farmer et al. 2013).

Also important to the scientific process are interactions within the scientific community. Scientific collaboration can take place through informal discussion over a cup of coffee as well as more formal interactions, such as presenting at conferences and engaging in scholarly peer review. Scholarly peer review describes the process whereby an author’s work must pass the scrutiny of other experts in the field before being accepted for publication in a journal or book. This helps keep scientists accountable for ethically responsible research projects and papers. Additionally, presenting data at conferences and in articles and books allows researchers to receive critical feedback from academic peers and others to test these ideas and further the field of science toward identifying the best explanations. It is important that the scientific field include researchers with diverse identities, backgrounds, and experiences so that researchers ask new questions, innovate, and problem solve more effectively.

Hypotheses, Theories, and Laws

Scientific investigation occurs at many levels, from investigating individual cases (e.g., “What is causing this child’s mysterious illness?”) to understanding processes that affect most of us (“What is the ideal amount of sleep for an adult?”). All of these questions are important and will generate different types of testable scientific explanations. So far, we have used the term hypothesis to describe these scientific ideas about why observed phenomena are the way they are. Hypotheses are typically explanations that address a narrow set of phenomena, such as (in anthropology) a particular human population or primate species.

In science, a theory is an explanation of observations that addresses a wide range of phenomena. Like hypotheses, theories also explain how or why something occurs, rely on empirical evidence, and are testable and able to be refuted. Because the term theory is often used casually outside of science, you may hear people try to dismiss a scientific claim as “just a theory.” In science there are often multiple competing theories, but over time some are eliminated, leaving standing the theory or theories that best explain the most evidence. Scientific theories that have stood the test of time are thus supported by many lines of evidence and are usually reliable. Some well-tested theories accepted by most scientists include the theory of general relativity, which explains the law of gravitation and its relation to other forces, and evolutionary theory, which describes how heritable traits can change in a population over time.

While scientific hypotheses and theories share many characteristics, laws are quite different. A law is a prediction about what will happen given certain conditions, not an explanation for how or why it happens. A law is not a “mature” version of a theory. For example, Newton’s universal law of gravity allows us to predict the gravitational force (F) between any two objects using the equation F=G(m1m2)/r2, but it does not explain why gravity works. Laws are often mathematical, and some well-known laws include Newton’s three laws of motion and Mendel’s laws of genetic inheritance. Laws are important, and their discovery often promotes the development of theories.

People with surprised expressions stand as a naked man runs by.
Figure 1.18: Archimedes is portrayed here having just discovered his Principle of Buoyancy. The vignette is by Count Giammaria Mazzuchelli (1707–1765). Credit: Eureka! Archimede by Science and Society Piture Library Prints is in the public domain. [This image is a faithful photographic reproduction of “Archimedes’ Principle” vignette from “Historical and Critical Information about the Life, Inventions and Writings of Archimedes of Syracuse” by Count Giammaria Mazzuchelli (1707–1765), published in Brescia, Italy in 1737.]

To demonstrate how important laws can be—and to show how unusual things can inspire scientific discoveries—we can use the story of the ancient Greek mathematician and inventor Archimedes (Figure 1.18). Archimedes’s buoyancy principle is a law that is useful for many things, including density calculations and designing ships. Purportedly, he made this discovery when he noticed the water level rise in the bathtub when he climbed in it. Realizing its importance, he is said to have shouted “Eureka” and proceeded to run naked through the city of Syracuse. While this fun story may or may not be true, it does remain that scientific laws, alongside scientific hypotheses and theories, have a very important role in the scientific process and in generating scientific explanations about our natural world.

Ways of Knowing: Science, Faith, and Anthropology

In anthropology, we recognize that there are many ways of knowing things. For instance, you might know that fingernails are softer than metal because as a child you accidentally stapled through your fingernail while doing an art project (a coauthor of this textbook once experienced this). This would be an example of knowledge you gained through experience. You might also know that inserting a knife into an electrical outlet is dangerous and could greatly harm you. Hopefully you learned this not from personal experience but through instruction from parents, teachers, and others in your social group. The degree to which humans rely on and benefit from the experiential knowledge of others is an important characteristic of what makes us human.

A unified way of knowing that is shared by a group of people and used to explain and predict phenomena is called a knowledge system. Human knowledge systems are diverse and reflect the wide range of cultures and societies throughout the world and through time.

Science and religion are both knowledge systems. Yet they differ in important ways. The type of knowledge gained from science is often called scientific understanding. As we have explored in the previous section, scientific understanding can change and relies on evidence and rigorous, repeated testing. Religious or spiritual ways of knowing are called belief, which is different from scientific understanding because they do not require repeated testing or validation (although they can rely on observations and experiences). Instead, belief relies on trust and faith.

Different individuals, cultures, and societies may place more value on one type of knowing than another, although most use a combination that includes science, empiricism, and religion. In fact, Bronisław Malinowski (1884–1942), an important anthropologist of the early twentieth century, concluded that all societies use both religion and science in some way or another, because they are both common ways that humans experience the world.

In contemporary societies such as the United States, science and (some) religions conflict on the topic of human origins. Nearly every culture and society has a unique origin story that explains where they came from and how they came to be who they are today. These stories are often integrated into the culture’s religious belief system. Many anthropologists are interested in faith-based origin stories and other beliefs because they show us how a particular group of people explain the world and their place in it. Anthropologists also value scientific understanding as the basis for how humans vary biologically and change over time. In other words, anthropologists value the multiple knowledge systems of different groups and use them to understand the human condition in a broad and inclusive way.

It is also important to note that scientists often depend on the local knowledge of the people with whom they work to understand elements of the natural or physical world that science has not yet investigated. Many groups, including Indigenous peoples, know about the world through prolonged relationships with the environment. Indigenous knowledge systems—specific to an Indigenous community or group—are informed by their own empirical observation of a specific environment and passed down over generations.

While religion and Indigenous knowledge systems may play a complementary role in helping anthropologists understand the human condition, they are distinct from science. The anthropological subdiscipline of biological anthropology is based on scientific ways of knowing about humans and human origins. In this volume, we will exclusively explore what science tells us about how humans came to be and why we are the way we are today. Therefore, you do not need to believe in evolution to master this material, because belief is not a scientific way of knowing. For this textbook, you only need to understand the scientific perspectives of evolution.

Throughout our lives, each of us work to reconcile our worldview with the different ways we have of knowing things. This is part of our lifelong intellectual journey. It is also, in our opinion, one of the most exciting parts of learning. We are pleased you have joined us on this journey of knowledge about humanity and yourself!

Summary

Biological anthropology relies on the scientific method to investigate humans and other primates across time and place. While research in this field begins with careful observation, hypotheses are more closely examined with empirical evidence from excavation, fieldwork, or laboratory study. Focusing on this scientific foundation, the discipline allows anthropologists to move beyond belief and speculation to produce knowledge that is testable and continually open to challenge.

Findings are continually debated, reviewed, and revised, ensuring that explanations improve and remain grounded in current and relevant evidence. If you have not caught on already, this textbook follows the same process, reflecting the evolving body of knowledge that is biological anthropology.

Review Questions

  • What is science?
  • What is the scientific method?
  • How does science compare to other ways of knowing?

Key Terms

Empirical: Evidence that is verifiable by observation or experience instead of relying primarily on logic or theory.

Faith: Complete trust or confidence in the doctrines of a religion, typically based on spiritual apprehension rather than empirical proof.

Knowledge system: A unified way of knowing that is shared by a group of people and used to explain and predict phenomena.

Participant observation: A research method common in cultural anthropology that involves living with, observing, and participating in the same activities as the people one studies.

Scholarly peer review: The process whereby an author’s work must pass the scrutiny of other experts in the field before being published in a journal or book.

Scientific understanding: Knowledge accumulated by systematic scientific study, supported by rigorous testing and organized by general principles.

Theory: An explanation of observations that typically addresses a wide range of phenomena.

For Further Exploration

Understanding Science website (a project of the University of California Museum of Paleontology.

Anticole, Matt. n.d. “What’s the Difference between a Scientific Law and Theory?” TedEd Lesson.  Accessed January 28, 2023. 28, 2023.

Chan, Keith. 2021. “Icebreaker Science.” In Explorations: Lab and Activities Manual, edited by Beth Shook, Katie Nelson, Kelsie Aguilera, and Lara Braff. Arlington, VA: American Anthropological Association.

Chizmeshya, Sydney Quinn, and Katherine E. Brent. 2021. “Knowing and Believing.” In Explorations: Lab and Activities Manual, edited by Beth Shook, Katie Nelson, Kelsie Aguilera, and Lara Braff. Arlington, VA: American Anthropological Association.

Pfister, Anne E. 2021. “Science and Belief: Just Because We Can, Doesn’t Always Mean We Should.” In Explorations: Lab and Activities Manual edited by Beth Shook, Katie Nelson, Kelsie Aguilera, and Lara Braff. Arlington, VA: American Anthropological Association.

References

Binford, Leigh. 2016. The El Mozote Massacre: Human Rights and Global Implications. Revised and expanded edition. Tucson: University of Arizona Press.

Estrada, Alejandro, Paul A. Garber, Anthony B. Rylands, Christian Roos, Eduardo Fernandez-Duque, Anthony Di Fiore, K. Anne-Isola Nekaris, et al. 2017. “Impending Extinction Crisis of the World’s Primates: Why Primates Matter.” Science Advances 3(229): 1–16.

Farmer, Paul. 2006. AIDS and Accusation: Haiti and the Geography of Blame. Berkeley: University of California Press.

Farmer, Paul, Matthew Basilico, Vanessa Kerry, Madeleine Ballard, Anne Becker, Gene Bukhman, Ophelia Dahl, et al. 2013. “Global Health Priorities for the Early Twenty-first Century.” In Reimagining Global Health: An Introduction, edited by Paul Farmer, Jim Yong Kim, Arthur Kleinman, and Matthew Basilico, 302–339. Berkeley: University of California Press.

Kenyon, Kathleen. 1979. Archaeology in the Holy Land. New York: W.W. Norton.

Malotki, Ekkehart. 1983. Hopi Time: A Linguistic Analysis of the Temporal Concepts in the Hopi Language. Berlin: De Gruyter.

Mead, Margaret. 1928. Coming of Age in Samoa. Oxford: Morrow.

Ochs, Elinor and Bambi Schieffelin. 2017. “Language Socialization: An Historical Overview.” In Encyclopedia of Language and Education, Volume 8, edited by Patricia Duff, 3-16. New York: Springer.

Rathje, William and Cullen Murphy. 1992. “Five Major Myths about Garbage, and Why They’re Wrong.” Smithsonian 23, no. 4: 113-122.

TANN. 2018. “Mexican Anthropologists Put Face on Nearly 14,000-Year-Old Woman.” Archaeology News Network, August 19, 2018. Accessed on November 16, 2022.

Whorf, Benjamin. 1956. Language, Thought, and Reality. Cambridge: MIT Press.

definition

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

Explorations (Version 2): An Open Invitation to Biological Anthropology Copyright © 2023 by Beth Shook; Katie Nelson; Lara Braff; and Kelsie Aguilera is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.

Share This Book